

Universidade Federal de Goiás INSTITUTO DE MATEMÁTICA E ESTATISTICA

Campus Samambaia - 74001-970 - Goiânia http://www.ime.ufg.br - (62) 3521 1742 - (62) 3521-1208 - secretaria.ime@ufg.br

Plano de Ensino

01. Dados de Identificação da Disciplina:

Semestre:	2022.2	Curso:	Engenharia Elétrica
Turma:	С	Código Componente:	IME0345
Componente:	GEOMETRIA ANALÍTICA	UA Responsável:	IME
Carga Horária:	64	UA Solicitante:	EMC
Teórica/Prática:	64/-	EAD/PCC:	-/-
Horários:	35m12	Docente:	Prof(a) Mauricio Donizetti Pieterzack

02. Ementa:

Vetores no plano e no espaço: Produto escalar e vetorial; Retas: equações cartesiana e paramétricas; Planos; Cônicas; Superfícies Quádricas; Coordenadas polares.

03. Programa:

- 1. O Plano: Sistemas de coordenadas, distância entre dois pontos, equação cartesiana da circunferência. Vetores no plano: definição, operações, produto escalar, ângulo entre vetores, projeção; Equação cartesiana da reta, Equações paramétricas da reta. Ângulo entre retas, distância de um ponto a uma reta; Equações paramétricas da circunferência.
- 2. Cônicas: Elipse: Definição, construção geométrica, elementos principais e equação; Hipérbole: Definição, construção geométrica, elementos principais e equação; Parábola: Definição, construção geométrica, elementos principais e equação; Rotação e translação de eixos; Equação geral do segundo grau; Sistema de Coordenadas polares. Equações das cônicas em coordenadas polares.
- 3. O Espaço: Sistemas de coordenadas, distância entre dois pontos, equação da esfera. Vetores no espaço: Operações com vetores. Produto vetorial e produto misto. Áreas e volumes. Equações de Planos: cartesiana e paramétricas. Equações paramétricas de retas. Interseção de planos, interseção de retas e planos e interseção de retas. Distância de um ponto a um plano, distância de um ponto a uma reta e distância entre retas reversas.
- 4. Quádricas: Superfícies de Revolução. Quádricas dadas por suas formas canônicas. A equação geral do segundo grau em três variáveis. Curvas dadas por interseção de superfícies.

04. Cronograma:

O plano: 16 horas/aula
Cônicas: 10 horas/aula
O espaço: 14 horas/aula
Quádricas: 18 horas/aula
Avaliações: 6 horas/aula

Esse cronograma poderá sofrer ajustes ao longo do semestre

05. Objetivos Gerais:

O principal objetivo da disciplina de Geometria Analítica é a solução de problemas geométricos usando métodos e ferramentas algébricas, como também na direção oposta, fornecer uma visão geométrica de problemas enunciados com equações algébricas. Os estudantes devem conseguir, a partir de um sistema de coordenadas, descrever objetos geométricos por meio de equações algébricas. Desenvolver e consolidar atitudes de participação, comprometimento, organização, flexibilidade e autocrítica no desenrolar do processo ensino- aprendizagem

06. Objetivos Específicos:

- 1. Desenvolver o raciocínio lógico e matemático;
- 2. Descrever retas, cônicas e quádricas por suas equações algébricas e resolver problemas envolvendo estes objetos;
- 3. Identificar e esboçar gráficos de retas, planos, cônicas e quádricas por suas equações algébricas;
- 4. Habilidades em resolver problemas envolvendo vetores e suas operações;
- 5. Desenvolver uma visão geométrica no espaço;
- 6. Fornecer ferramentas matemáticas necessárias para que o estudante possa utilizá-las em outras disciplinas de seu curso e na formação científica como um todo.

07. Metodologia:

As aulas serão expositivas abordando definições, conceitos e exemplos seguidos de leitura e resolução de problemas. Serão propostos exercícios em sala ou extra classe para fixação e análise dos conteúdos abordados, também com a finalidade de desenvolver no estudante suas próprias habilidades e incentivar a criatividade na resolução, propiciando a ele a oportunidade de utilizar raciocínios adquiridos anteriormente. Poderão também ser usados recursos tecnológicos para o desenvolvimento de atividades da disciplina e nesse caso serão utilizadas plataformas tais como Moodle/SIGAA/Google Sala de Aula para disponibilizar materiais didáticos, atividades avaliativas e listas de exercícios para a turma. Caso não seja possível o cumprimento da carga horária da disciplina por meio de atividades presenciais nos horários estabelecidos no calendário acadêmico, poderão ser desenvolvidas atividades assíncronas ou complementada a carga horária com atividades a serem entregues pelos estudantes, valendo como atividades avaliativas ou não.

08. Avaliações:

Serão realizadas três avaliações escritas com notas N_1 , N_2 e N_3 , sendo que a nota N_1 tem peso 1, N_2 tem peso 2 e a nota N_3 tem peso 3. A média final, MF, será calculada fazendo-se a média ponderada das três notas, dada pela expressão:

$$MF = (N_1 + 2N_2 + 3N_3)/6.$$

Os conteúdos que serão abordados em cada avaliação serão aqueles ministrados até a data imediatamente anterior à data da realização da avaliação ou aquele que for acordado entre o professor e os estudantes.

Universidade Federal de Goiás INSTITUTO DE MATEMÁTICA E ESTATISTICA

Campus Samambaia - 74001-970 - Goiânia http://www.ime.ufg.br - (62) 3521 1742 - (62) 3521-1208 - secretaria.ime@ufg.br

Datas das Avaliações Avaliação 1: 17/11/2022 Avaliação 2: 19/01/2023 Avaliação 3: 28/02/2023

Poderão haver alterações nas datas das avaliações decorrentes de ajustes no calendário ou em comum acordo entre o professor e os estudantes.

Conforme o interesse e a motivação dos(as) alunos(as) durante todo o semestre, uma **Prova Final** poderá ser aplicada. O conteúdo dessa prova será aquele desenvolvido ao longo de todo o semestre e a nota da **Prova Final** será usada apenas para a obtenção da nota mínima de aprovação na disciplina.

Os alunos que perderem alguma avaliação poderão fazer a **Prova Final** ou requerer ^a Chamada, de acordo com o que apregoa o RCG (Resolução CEPEC 1557/2017).

As avaliações poderão ser respondidas a lápis, mas neste caso o aluno perderá o direito de requerer revisão de prova, caso a mesma esteja em seu poder e não do professor.

No horário de realização das avaliações não será permitido o uso de telefone celular, em qualquer circunstância, sendo que, se algum estudante for flagrado fazendo uso do mesmo durante a avaliação, será atribuída nota 0,0 (zero) nessa avaliação.

O professor poderá solicitar documento de identificação com foto nos dias de avaliação.

Para ser considerado aprovado na disciplina o aluno deverá ter frequência igual ou superior a setenta e cinco porcento e média final maior ou igual a 6,0 (seis). O professor informará ao estudante a sua frequência, sempre que lhe for solicitado, e o estudante deverá acompanhar pelo SIGAA.

As notas das avaliações serão encaminhadas aos estudantes por meio de correio eletrônico, assim como quaisquer outros materiais complementares, e também serão disponibilizadas na sala de aula e no SIGAA. Os endereços de e-mail dos estudantes serão obtidos através do SIGAA, fornecido pelos sistemas da UFG, ou aqueles indicados pelos estudantes.

É parte integrante deste Plano de Ensino o Calendário das Atividades da disciplina que será disponibilizado no SIGAA.

Para os alunos que solicitarem será providenciada uma cópia dos materiais encaminhados via correio eletrônico ou postados no SIGAA.

09. Bibliografia:

- [1]: REIS, G. L; SILVA, V. V. Geometria analítica. 2 ed. São Paulo LTC, 1996.
- [2]: LIMA, E. L. Coordenadas no plano. 4 ed. Coleção do Professor de Matemática. Rio de Janeiro Sociedade Brasileira de Matemática, 2002.
- [3]: LIMA, E. L. Coordenadas no espaço. 4 ed. Coleção do Professor de Matemática. Rio de Janeiro SBM, 2007.
- [4]: BOULOS, P.; CAMARGO, I. Introdução à geometria analítica no espaço. São Paulo Makron Books, 1997.

10. Bibliografia Complementar:

- [1]: ÁVILA, G. S. S. Cálculo das funções de uma variável. 7 ed. V. 1. Rio de Janeiro LTC, 2004.
- [2]: LEHMANN, C. H. Geometria analítica. 7 ed. São Paulo Globo, 1991.
- [3]: LIMA, E. L. Geometria analítica e álgebra Linear. 2 ed. Rio de janeiro IMPA, 2013.
- [4]: STEINBRUCH, A., WINTERLE, P. Geometria analítica. 2. ed. São Paulo McGraw-Hill, 1987.
- [5]: STEWART, J. Cálculo. 5. ed. V. 2. São Paulo Pioneira Thomson Learning, 2006.

11. Livros Texto:

[1]: REIS, G. L; SILVA, V. V. Geometria analítica. 2 ed. São Paulo LTC, 1996.

12. Horários:

Dia	Horário	Sala

13. Horário de Atendimento do(a)s Professor(a):

- 1. Quarta-feira: 16:00 17:30 Sala 210 IME (Campus Samambaia)
- 2. Quinta-feira: 10:00 11:30 Diretoria DAD (Praça Universitária)

14. Professor(a):

Mauricio Donizetti Pieterzack.	Email: mauricio_pieterzack@ufg.br,	IME
	Prof(a) Aline	De Souza Lima